Modelling and Verification of Real-Time Systems
A case study with UPPAAL

Juan Pablo Gruer

Universidad Nacional de Tucuman

Juan Pablo Gruer Modelling and Verification with UPPAAL 1/51



Plan

o Modelling reactive systems

© The State-Transition Paradigm
© The UPPAAL modelling Language
e informal semantics of UPPAAL
© Verification of reactive systems

e Expressing properties of UPPAAL models

Juan Pablo Gruer Modelling and Verification with UPPAAL 2/51



Modelling reactive systems

Sommaire

o Modelling reactive systems

Juan Pablo Gruer Modelling and Verification with UPPAAL 3/51



What and why ?

What is a model ?

A model is an abstract representation of a system. A model can be
informal or formal.

@ Abstraction : all details that are not relevant respectively to the
intended usage of the model are not represented in it.

@ Informal model : is built using informal languages (text, sketches,
o)

@ formal model : is built using a language with a well-founded
semantics, based on logic, mathematics, ...

Juan Pablo Gruer Modelling and Verification with UPPAAL 4/51



What and why ?

Why to build models of reactive systems ?

Benefits of building a model during de design process of a reactive
system :

@ Communication : all contributors to the design process can share
information about the system (informal or formal).

@ Simulation : Put the model to "work" in order to grasp or estimate
partially how the real system will operate (formal).

@ Verification : To establish with the strength of a mathematical
proof that the model satisfies some property (formal).

Juan Pablo Gruer Modelling and Verification with UPPAAL 5/51



Modelling reactive systems

Points of view

A system has different aspects. Each one can be represented by
specific modelling languages :

@ Structure : describes components and data/control flows between
them.

@ Classes : describes class hierarchy, heritage, interaction.

@ Behaviour : describes evolution along time in terms of response
to sequences of stimuli.

Juan Pablo Gruer Modelling and Verification with UPPAAL 6/51



Modelling reactive systems

Real-Time systems are reactive

Reactive systems interact with an active environment by reacting to
stimuli.

sig1 sig3

—_— | __—>sig

$ig2 ——| ———> sig4
REACTIVE SYSTEM

vl — %

o2 — | T s

Two kinds of stimuli and reactions :
@ Signals : convey a value that changes along time (Ex :
temperature, pressure, electric voltage, ...).

@ Events : the only information they convey is the instant in time
when they occur. They are related to logical rather than numerical
variables.

Juan Pablo Gruer Modelling and Verification with UPPAAL 7/51



Modelling reactive systems

Relationship between stimuli and and reactions

Different occurrences of the same stimulus may provoke different
reactions.

Example : Consider a lift control system. pushing the call bottom from
the 4th floor provokes reaction "move elevator downwards" if the cabin
is in 8th floor and reaction "move the elevator upwards" if the cabin is

in the basement.

A reaction depends on a stimulus AND on the internal state of the
system.

Juan Pablo Gruer Modelling and Verification with UPPAAL 8/51



Modelling reactive systems

Behaviour-description languages

Many different languages can be used to describe system behaviour :

@ Process algebras.

@ Petri Nets.

@ State-Transition diagrams.
° ..

We present here the state-transition paradigm for the behavioural
description of reactive systems.

Juan Pablo Gruer Modelling and Verification with UPPAAL 9/51



The State-Transition Paradigm

Sommaire

9 The State-Transition Paradigm

Juan Pablo Gruer Modelling and Verification with UPPAAL 10/51



The State-Transition Paradigm

The state-transition paradigm

The behavioural model of a system is built by defining,

@ A set of states : each state stands for a stable system situation
(the elevator is in the 8th floor and there is not any registered
service request).

@ A set of transitions describing a change of state. Each transition is
composed each one of them, of a couple of states (transition
origin, transition destination) and a triple (event, condition, action).

Juan Pablo Gruer Modelling and Verification with UPPAAL 11/51



The State-Transition Paradigm

Graphic representation of state-transition models

State-transition descriptions have a convenient graphic representation :
a state is a nodes and a transition is an arrow joining the origin state to
the destination state, decorated by the triple (event, condition, action).

(ev,cond,ac)
S, S,

The intended meaning is : if the system is in state S, and event ev
occurs then, provided that condition cond is satisfied, the system
produces reaction ac and goes to state Sy.

Juan Pablo Gruer Modelling and Verification with UPPAAL 12/51



The State-Transition Paradigm

State-Transition model of a very simple system

A boiler control system

The operating part :

L

watin

> Niv

B—>FPR poweron
f Epoweroff

_—
temp
watout
—
Modelling and Verification with UPPAAL

Events:
watin
watout
poweron
poweroff

temp
niv
PR

13/51



The State-Transition Paradigm

State-Transition model of a very simple system

A boiler control system

The controller :

stopped

e—— on_off
e—— niv
[e— temp
le— PR

5 poweron

> poweroff
—— watimp
—> watoutp

CONTROLLER

Juan Pablo Gruer Modelling and Verification with UPPAAL 14 /51



The State-Transition Paradigm

Some remarks

@ Transition labels are in general triples (ev, cond, ac) but in
practice one or more components of the triple could be lacking
(question : can a transition be label-less ?).

@ The automaton in the preceding slide presents only the
temperature control part. Try to modify it to incorporate water level
control. You will rapidly feel the need to be able to introduce
structure. Two constructs have been conceived to structure
automata models : state hierarchy (Statecharts) or modularity
(UPPAAL).

Juan Pablo Gruer Modelling and Verification with UPPAAL 15/51



The UPPAAL modelling Language

Sommaire

© The UPPAAL modelling Language

Juan Pablo Gruer Modelling and Verification with UPPAAL 16 /51



History

UPPAAL results from a collaboration between University of Uppsala (Sweden) and Aalborg
(Denmark). The modelling language is based on timed automata . Because of the explicit
reference to time in UPPAAL models, this language is adapted to the modelling of Real-Time
systems.The first release was in 1995. Currently available free release is 4.1.19. An industrial
version of UPPAAL is available (commercial license) and a set of complementary tools has been
developed (time conformance analysis, reachability, statistics, test set generation, ...)

1. Alur and Dill, A Theory of Timed automata, Theoretical Computer Science,
Elsevier, 1994.

Juan Pablo Gruer Modelling and Verification with UPPAAL 17 /51



Characteristics of UPPAAL

@ Comes as a working environment including an editor, a simulator
and a model-checker (verification).

@ Structure is given by means of modularity : a model is a set of
automaton modules that are instances of parametrized automata
templates.

@ Both the simulator and the model checker generate execution
traces for diagnostic.

@ The model-checker verifies properties expressed with temporal
logic formulas.

Juan Pablo Gruer Modelling and Verification with UPPAAL 18/51



The UPPAAL modelling Language

Language components

The modelling language of UPPAAL is graphic with the possibility of
adjoining textual elements (functions and procedures, with a language
similar to C, ...). The graphic language includes :

@ Variables

@ States

@ Transitions

Juan Pablo Gruer Modelling and Verification with UPPAAL 19/51



UPPAAL variables

Variables come in simple or array form and,
@ have atype : boolean, integer interval, clock or channel.
@ can be local to an automaton or global.

@ variable declaration : bool A[4]; int [-10,10] N; clock H1, H2;
chan CH1;

@ clock variables introduce temporal aspects.

@ channel variables introduce a synchronisation mechanism based
on event emission and reception.

Juan Pablo Gruer Modelling and Verification with UPPAAL 20/ 51



UPPAAL clocks

The value of a clock variable in UPPAAL can be seen as a measure of the time spent from an
initial instant Ty. As any ordinary variable, its value can be assigned by an assignment operation
at time T but from then on continues to increase linearly. Clock variables can be used in
transition conditions and in so called temporal invariants associated to states.

Value
of H
1
Juan Pablo Gruer Modelling and Verification with UPPAAL

21/51



The UPPAAL modelling Language

UPPAAL channels

Variables of type channel implement a basic mechanisme to synchronize two or more automata.

For automata A; an A, to be synchronised by channel ch, automaton A (Az) has to include et

transition 7y with ch! in the label of 7y and automaton A, (A;) has to include a transition 7 with

ch? in the label of 7».

Juan Pablo Gruer Modelling and Verification with UPPAAL

22 /51



UPPAAL states

States are represented by simple or double circles. A double-circled
state(S1) is an initial state (one and only one per automaton). States
have a name and a few other attributes :

@ a state can be normal (S0), urgent (S2) or committed (S3).
@ a state can be assigned a state invariant (S4).

H1<10
) S1 S2 S3 S4

The meaning of urgent states, committed states and state invariants
will be explained later.

Juan Pablo Gruer Modelling and Verification with UPPAAL

23 /51



UPPAAL transitions

As previously stated, transitions are triples (So, label, Sy), where labels are triples
(ev, cond, act). UPPAAL enriches the basic transition label by adding other components. An
UPPAAL transition label includes a subset of the following components :

@ Selection : syntax similar to a declaration (but not an UPPAAL variable declaration) : i : int
[0,3].

@ Gard : this is the transition’s condition (a boolean expression).

@ Synchronisation : one of the expressions ch! or ch ?, where ch is the idetifier of a
channel variable.

@ Action : can be a value assignment (var = exp) or a function call (var = func(...)) or a
procedure call (proc(...))

(sel,gard,synch,ac)
S, Sy

Juan Pablo Gruer Modelling and Verification with UPPAAL 24 /51




UPPAAL model definition

The UPPAAL timed model of a reactive system is composed of :

@ a set of automaton templates.
@ variable declarations local to each template.

@ global variables declarations (all channel variables are declared
as global).

@ the system declaration where the automaton templates are
instantiated and the list of component instances is declared.

Juan Pablo Gruer Modelling and Verification with UPPAAL 25/51



The UPPAAL modelling Language

A simple model : template S1

Consider a system composed of two templates, S1 and S2. Template S1 (see below) has the
following local declarations :
int [0,10] x;;

clock ck1;

ckl >=10

WAIT
ckl <=10

START

Juan Pablo Gruer Modelling and Verification with UPPAAL 26 /51



The UPPAAL modelling Language

A simple model : template S2

Template S1 (see below) has the following local declarations :
inty;

Juan Pablo Gruer Modelling and Verification with UPPAAL 27 /51



The UPPAAL modelling Language

A simple model : global and system declarations

@ the only global variable is the synchronization channel : chan ch1;

@ the system declaration instantiates S1 and S2 and integrates
them into the system : system S1, S2;

Note that neither S1 nor S2 include instance parameters. If they had,
before the system declaration, an explicit instantiation should be made.

Juan Pablo Gruer Modelling and Verification with UPPAAL 28/51



informal semantics of UPPAAL

Sommaire

e informal semantics of UPPAAL

Juan Pablo Gruer Modelling and Verification with UPPAAL 29/51



informal semantics of UPPAAL

The behaviour of a system model

Some definitions (1)

Let us consider a system composed of automata A4, - - - , A, such that
each automaton A; has its own set of states. Let V be the set of all
variables. The global state of the system at instant i (noted %) is
composed of the local state of each automaton and the value of each

variable at that instant.

A transition 7 = (S,, (sel, guard, act), Sy) without synchronization, is
enabled in ¥; if :

@ S, belongsto X;.
@ condition guard is satisfied by the value of variables in ¥;.

Juan Pablo Gruer Modelling and Verification with UPPAAL 30/51



informal semantics of UPPAAL

The behaviour of a system model

Some definitions (2)

Let us consider a transition 7 = (S, (sel, guard, synch, act), Sy) with
synchronization, 7 is enabled in %; if :

@ S, belongsto ;.

@ condition guard is satisfied by the value of variables in ¥;.

@ if synch = ch! for some channel variable ch, then there is another
system’s automaton with an enabled transition that has ch? as
synchronsation.

@ if synch = ch? for some channel variable ch, then there is another
system’s automaton with an enabled transition that has ch! as
synchronsation.

Juan Pablo Gruer Modelling and Verification with UPPAAL 31/51



The behaviour of a system model

The effect of transition triggering

When a transition without synchronisation or a couple of synchronised
transition are triggered, the global state is modified :

@ S, is replaced by S, for each of the triggered transitions.

@ variable values are updated according to the action of each
triggered transition.

If two synchronised transitions update the same variable, the updating
made by the receiving automaton (ch?) prevalils.

Juan Pablo Gruer Modelling and Verification with UPPAAL 32/51



informal semantics of UPPAAL

The behaviour of a system model

Evolutions of a system

An evolution of system model is an ordered sequence
Y9,29,- -+, 2k, -+ such that :

@ Y, is the initial global state composed of the initial state of each
model’s automaton and the initial value of each variable (default or
assigned at declaration).

@ each X; with / > 0 results from the triggering of a transition without
synchronisation enabled in ¥;_¢ or the triggering of two
synchronised transitions enabled in X;_1.

Juan Pablo Gruer Modelling and Verification with UPPAAL 33/'51



informal semantics of UPPAAL

The behaviour of a system model

The behaviour of a system model is the set of all possible evolutions of
the system, as defined in the preceding slide.

Most of the system models are non deterministic : at a given global

state more than one transition could be enabled. Depending on the
transition that is triggered, different evolutions are performed.

Juan Pablo Gruer Modelling and Verification with UPPAAL 34 /51



informal semantics of UPPAAL

The behaviour of a system model

Tree representation

Because of non-determinism, the behaviour of a system can be
represented as a tree (nodes are global states) :

Juan Pablo Gruer Modelling and Verification with UPPAAL

35/51



informal semantics of UPPAAL

The behaviour of a system model

Open systems and closed systems

Two kinds of systems can be distinguished :

@ Open systems : react to external signals or events from the
environment, with which they interact.

@ Closed systems : evolutions are provoked only by the internal
global state and by internal events (synchronisations).

Juan Pablo Gruer Modelling and Verification with UPPAAL

36 /51



informal semantics of UPPAAL

The behaviour of a system model

Flow of time and clock updating

Transition triggering is considered to be instantaneous. Clock values evolve only in global states
where there are not enabled transitions. In that situation, the following cases can be considered :

@ after some amount of time an external event occurrence or an external signal changes its
value, a transition becomes enabled and the global state evolves by the triggering of the
transition The clock variables are updated by adding the amount of time that had passed or
by transition actions that assign them a new value (open systems).

@ after some amount of time a transition becomes enabled and the global state evolves by
the triggering of the transition. The clock variables are updated by adding the amount of
time that had passed or by transition actions that assign them a new value (open and close
systems).

@ the flow of time does not produce a situation where at least a transition is enabled. The
system model has reached a final global state from which there in not any further evolution
(closed systems).

Juan Pablo Gruer Modelling and Verification with UPPAAL 37/51



informal semantics of UPPAAL

A system and its behaviour

Evolution of time

[INI1, INI2, Ck1=0, X=0]

!

[WAIT, INI2, Ck1=10, X=0]

[DONE, INC, Ck1=10, X=0]

\

0] [DONE, INI2, Ck1=10, X=1]

-

[INI1, INI2, Ck1=0,

!

0, X

[INI1, INC, Ck1

/

Variables globales: chan Ch1;
Variables de A1: clock Ck1;

Variables de A2: int X;

Juan Pablo Gruer Modelling and Verification with UPPAAL 38/51



The behaviour of a system model

Deadlock situations

Deadlock situations can arise when urgent or committed states are active. In both kinds of states
time is not "allowed" to pass until an outgoing transition is enabled and triggered. The difference
between urgent and committed states is the following :

@ if an urgent state becomes active it must be abandoned immediately by the triggering of an
outgoing transition 7 but other instantaneous transitions can be triggered before .

@ if a committed state becomes active it must be abandoned immediately by the triggering of
an outgoing transition = and not any other transition is allowed to be triggered before .

@ if a state with an invariant assigned to it must be abandoned as soon as its invariant
evaluates tu "false". We can say that when the invariant becomes false, the state becomes
a committed state.

If the conditions presented here are not satisfied, then a deadlock situation arises.

Juan Pablo Gruer Modelling and Verification with UPPAAL 39/51



informal semantics of UPPAAL

A system and its behaviour

A case without deadlock

> [INI1, INI2, Y=0, X=0] ¢y
[INI1, INI2, Y=1, X=0] [SEND, INI2, Y=0, X=1]
[SEND, INI2, Y=1, X=1]

!

[DONE, CLR, Y=1, X=1]

L—[INI1, CLR, Y=1, X=0] [Done, INI2, Y=0, X=1}—!

Variables globales: chan Ch1;
Variables de A1: int X;

Variables de A2: intY;

Juan Pablo Gruer Modelling and Verification with UPPAAL 40/ 51



A system and its behaviour

A case with deadlock due to a committed state

> [INI1, INI2, Y=0, X=0] ¢y
[INI1,INI2, Y=1, X=0] [SEND ,INI2, Y=0, X=1]
[SEND ,INI2, Y=1, X=1]

DEADLOCK

[DONE, CLR, Y=1, X=1]

L—[INI1, CLR, Y=1, X=0] [Done, INI2, Y=0, X=1}—!

Variables globales: chan Ch1;
Variables de A1: int X;

Variables de A2: intY;

Juan Pablo Gruer Modelling and Verification with UPPAAL 41/51



informal semantics of UPPAAL

A system and its behaviour

A case with deadlock due to an urgent state

[INI1, INI2, Y=0, X=0]

[INIM1, SEND, Y=0, X=1]

DEADLOCK

Variables globales: chan Ch1;
Variables de A1: int X;

Variables de A2: clock CL2;

Juan Pablo Gruer Modelling and Verification with UPPAAL

42 /51



Verification of reactive systems

Sommaire

© Verification of reactive systems

Juan Pablo Gruer Modelling and Verification with UPPAAL 43 /51



Exploiting models during the design process

Models are built during the design process of a reactive system but, what is the use of those
models ?

They can be used to increase the confidence in the good quality of the design and, more
importantly, to prove that system, as it is being designed, satisfies a set of safety properties.
There are two ways to exploit the system models :

@ simulation : the model can be "executed" to obtain its response to a simulation scenario,

registered in a simulation trace. The quality of simulation depends on the set of simulation
scenarios.

@ verification : a property P that the designed system is supposed to satisfy is formulated

and the model is "analysed" by a verification program to determine if the model satisfies P
or not.

Juan Pablo Gruer Modelling and Verification with UPPAAL 44 /51



Verification of reactive systems

Organisation of simulation and verification procedures

Slmulatlon Llst of

SIMULATOR VERIFICATOR

| /N

-I tSr;rEzlsation NO + 'l Verification

traces

Juan Pablo Gruer Modelling and Verification with UPPAAL 45/ 51



Verification of reactive systems

Verification techniques

Verification tools base on one of the following algorithmic approaches :

@ semi-automatic deduction : based on algorithms of
theorem-proving. The model is transformed to a formal logic
representation and the verification tool tries to "deduce" the
property from the model (seen as a set of premises). Example of
deduction-based toolbox : the B method (www.methode-b.com).

@ model-checking : based on decision algorithms(logical
consequence). The behaviour of the system is explored to
determine if the property is satisfied by the model. The verification
tool of UPPAAL is based on model-checking.

Juan Pablo Gruer Modelling and Verification with UPPAAL 46/ 51



Verification of reactive systems

Verification techniques

Pros and cons

Each approach has its own advantages and disadvantages :

@ semi-automatic deduction : cannot be fully automatic.
Frequently requires human intervention with high technicality.

@ model-checking : is simple ("push-button” style) but the

model-checking program not always terminates (combinatoric
explosion of the state space?).

2. The term "state space" is used to refer to the behaviour of the system, i.e. the set
of all possible evolutions.

Juan Pablo Gruer Modelling and Verification with UPPAAL 47 /51



Expressing properties of UPPAAL models

Sommaire

e Expressing properties of UPPAAL models

Juan Pablo Gruer Modelling and Verification with UPPAAL 48/ 51



Expressing properties of UPPAAL models

Properties of system behaviour

Properties that refer to the behaviour of a system express something
that is false or true of,

@ An isolated global state : expressed with the language of first
order predicates.

@ a single evolution : expressed with the language of first order
predicates + linear temporal operators.

@ all or some of the evolutions : from the root of the behaviour
tree expressed with the language of first order predicates + linear
temporal operators + tree temporal operators.

Juan Pablo Gruer Modelling and Verification with UPPAAL 49 /51



Expressing properties of UPPAAL models

Temporal logic operators

Linear temporal operators :
@ necessity : all the states of an evolution must satisfy state
property P (is writen []P).
@ eventually : sooner or later some state in the evolution satisfies
state property P (is writen <>P).

Tree temporal operators :

@ All : all the evolutions of a behaviour tree must satisfy linear
property P (is writen AP).

@ some : some evolutions of a behaviour tree must satisfy linear
property P (is writen EP).

Juan Pablo Gruer Modelling and Verification with UPPAAL 50/ 51



Expressing properties of UPPAAL models

Some interesting types of properties
and their expression with the UPPAAL property language

@ Safety "something wrong must not occur" : if state formula W
expresses something wrong then safety is expressed by A[] not
W. This is also called "invariance".

@ Weak reachability "from the root state at least an evolution leads
to a state that satisfies state property P. Expressed by E<>P.

@ Consequence "if a property P; is satisfied in some state then
another property P> will be satisfied later". Expressed by
A(P; = <> P»). UPPAAL accepts a simplified syntax :

Py ==> P,

Juan Pablo Gruer Modelling and Verification with UPPAAL 51/51



	Modelling reactive systems
	The State-Transition Paradigm
	The UPPAAL modelling Language
	informal semantics of UPPAAL
	Verification of reactive systems
	Expressing properties of UPPAAL models

